Paper 2, Section II, E

Partial Differential Equations
Part II, 2015

Prove that if ϕC(Rn)\phi \in C\left(\mathbb{R}^{n}\right) is absolutely integrable with ϕ(x)dx=1\int \phi(x) d x=1, and ϕϵ(x)=ϵnϕ(x/ϵ)\phi_{\epsilon}(x)=\epsilon^{-n} \phi(x / \epsilon) for ϵ>0\epsilon>0, then for every Schwartz function fS(Rn)f \in \mathcal{S}\left(\mathbb{R}^{n}\right) the convolution

ϕϵf(x)f(x)\phi_{\epsilon} * f(x) \rightarrow f(x)

uniformly in xx as ϵ0\epsilon \downarrow 0.

Show that the function NϵC(R3)N_{\epsilon} \in C^{\infty}\left(\mathbb{R}^{3}\right) given by

Nϵ(x)=14πx2+ϵ2N_{\epsilon}(x)=\frac{1}{4 \pi \sqrt{|x|^{2}+\epsilon^{2}}}

for ϵ>0\epsilon>0 satisfies

limϵ0R3ΔNϵ(x)f(x)dx=f(0)\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{3}}-\Delta N_{\epsilon}(x) f(x) d x=f(0)

for fS(Rn)f \in \mathcal{S}\left(\mathbb{R}^{n}\right). Hence prove that the tempered distribution determined by the function N(x)=(4πx)1N(x)=(4 \pi|x|)^{-1} is a fundamental solution of the operator Δ.-\Delta .

[You may use the fact that 0r2/(1+r2)5/2dr=1/3.\int_{0}^{\infty} r^{2} /\left(1+r^{2}\right)^{5 / 2} d r=1 / 3 . ]