Paper 1, Section II, A

Principles of Quantum Mechanics
Part II, 2015

If AA and BB are operators which each commute with their commutator [A,B][A, B], show that

F(λ)=eλAeλBeλ(A+B) satisfies F(λ)=λ[A,B]F(λ)F(\lambda)=e^{\lambda A} e^{\lambda B} e^{-\lambda(A+B)} \quad \text { satisfies } \quad F^{\prime}(\lambda)=\lambda[A, B] F(\lambda)

By solving this differential equation for F(λ)F(\lambda), deduce that

eAeB=e12[A,B]eA+Be^{A} e^{B}=e^{\frac{1}{2}[A, B]} e^{A+B}

The annihilation and creation operators for a harmonic oscillator of mass mm and frequency ω\omega are defined by

a=mω2(x^+imωp^),a=mω2(x^imωp^)a=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i}{m \omega} \hat{p}\right), \quad a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right)

Write down an expression for the general normalised eigenstate n(n=0,1,2,)|n\rangle(n=0,1,2, \ldots) of the oscillator Hamiltonian HH in terms of the ground state 0|0\rangle. What is the energy eigenvalue EnE_{n} of the state n?|n\rangle ?

Suppose the oscillator is now subject to a small perturbation so that it is described by the modified Hamiltonian H+εV(x^)H+\varepsilon V(\hat{x}) with V(x^)=cos(μx^)V(\hat{x})=\cos (\mu \hat{x}). Show that

V(x^)=12eγ2/2(eiγaeiγa+eiγaeiγa)V(\hat{x})=\frac{1}{2} e^{-\gamma^{2} / 2}\left(e^{i \gamma a^{\dagger}} e^{i \gamma a}+e^{-i \gamma a^{\dagger}} e^{-i \gamma a}\right)

where γ\gamma is a constant, to be determined. Hence show that to O(ε2)O\left(\varepsilon^{2}\right) the shift in the ground state energy as a result of the perturbation is

εeμ2/4mωε2eμ2/2mω1ωp=11(2p)!2p(μ22mω)2p.\varepsilon e^{-\mu^{2} \hbar / 4 m \omega}-\varepsilon^{2} e^{-\mu^{2} \hbar / 2 m \omega} \frac{1}{\hbar \omega} \sum_{p=1}^{\infty} \frac{1}{(2 p) ! 2 p}\left(\frac{\mu^{2} \hbar}{2 m \omega}\right)^{2 p} .

[Standard results of perturbation theory may be quoted without proof.]