Paper 3, Section II, J

Principles of Statistics
Part II, 2015

Define what it means for an estimator θ^\hat{\theta} of an unknown parameter θ\theta to be consistent.

Let SnS_{n} be a sequence of random real-valued continuous functions defined on R\mathbb{R} such that, as n,Sn(θ)n \rightarrow \infty, S_{n}(\theta) converges to S(θ)S(\theta) in probability for every θR\theta \in \mathbb{R}, where S:RRS: \mathbb{R} \rightarrow \mathbb{R} is non-random. Suppose that for some θ0R\theta_{0} \in \mathbb{R} and every ε>0\varepsilon>0 we have

S(θ0ε)<0<S(θ0+ε),S\left(\theta_{0}-\varepsilon\right)<0<S\left(\theta_{0}+\varepsilon\right),

and that SnS_{n} has exactly one zero θ^n\hat{\theta}_{n} for every nNn \in \mathbb{N}. Show that θ^nθ0\hat{\theta}_{n} \rightarrow \theta_{0} as nn \rightarrow \infty, and deduce from this that the maximum likelihood estimator (MLE) based on observations X1,,XnX_{1}, \ldots, X_{n} from a N(θ,1),θRN(\theta, 1), \theta \in \mathbb{R} model is consistent.

Now consider independent observations X1,,Xn\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} of bivariate normal random vectors

Xi=(X1i,X2i)TN2[(μi,μi)T,σ2I2],i=1,,n,\mathbf{X}_{i}=\left(X_{1 i}, X_{2 i}\right)^{T} \sim N_{2}\left[\left(\mu_{i}, \mu_{i}\right)^{T}, \sigma^{2} I_{2}\right], \quad i=1, \ldots, n,

where μiR,σ>0\mu_{i} \in \mathbb{R}, \sigma>0 and I2I_{2} is the 2×22 \times 2 identity matrix. Find the MLE μ^=(μ^1,,μ^n)T\hat{\mu}=\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{n}\right)^{T} of μ=(μ1,,μn)T\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)^{T} and show that the MLE of σ2\sigma^{2} equals

σ^2=1ni=1nsi2,si2=12[(X1iμ^i)2+(X2iμ^i)2]\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} s_{i}^{2}, \quad s_{i}^{2}=\frac{1}{2}\left[\left(X_{1 i}-\hat{\mu}_{i}\right)^{2}+\left(X_{2 i}-\hat{\mu}_{i}\right)^{2}\right]

Show that σ^2\hat{\sigma}^{2} is not consistent for estimating σ2\sigma^{2}. Explain briefly why the MLE fails in this model.

[You may use the Law of Large Numbers without proof.]