Paper 1, Section II, J

Principles of Statistics
Part II, 2015

Consider a normally distributed random vector XRpX \in \mathbb{R}^{p} modelled as XN(θ,Ip)X \sim N\left(\theta, I_{p}\right) where θRp,Ip\theta \in \mathbb{R}^{p}, I_{p} is the p×pp \times p identity matrix, and where p3p \geqslant 3. Define the Stein estimator θ^STEIN\hat{\theta}_{S T E I N} of θ\theta.

Prove that θ^STEIN\hat{\theta}_{S T E I N} dominates the estimator θ~=X\tilde{\theta}=X for the risk function induced by quadratic loss

(a,θ)=i=1p(aiθi)2,aRp\ell(a, \theta)=\sum_{i=1}^{p}\left(a_{i}-\theta_{i}\right)^{2}, \quad a \in \mathbb{R}^{p}

Show however that the worst case risks coincide, that is, show that

supθRpEθ(X,θ)=supθRpEθ(θ^STEIN,θ)\sup _{\theta \in \mathbb{R}^{p}} E_{\theta} \ell(X, \theta)=\sup _{\theta \in \mathbb{R}^{p}} E_{\theta} \ell\left(\hat{\theta}_{S T E I N}, \theta\right)

[You may use Stein's lemma without proof, provided it is clearly stated.]