Paper 1, Section II, J

Probability and Measure
Part II, 2015

(a) Define the following concepts: a π\pi-system, a dd-system and a σ\sigma-algebra.

(b) State the Dominated Convergence Theorem.

(c) Does the set function

μ(A)={0 for A bounded 1 for A unbounded \mu(A)= \begin{cases}0 & \text { for } A \text { bounded } \\ 1 & \text { for } A \text { unbounded }\end{cases}

furnish an example of a Borel measure?

(d) Suppose g:[0,1][0,1]g:[0,1] \rightarrow[0,1] is a measurable function. Let f:[0,1]Rf:[0,1] \rightarrow \mathbb{R} be continuous with f(0)f(1)f(0) \leqslant f(1). Show that the limit

limn01f(g(x)n)dx\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(g(x)^{n}\right) d x

exists and lies in the interval [f(0),f(1)][f(0), f(1)]