Paper 4, Section II,
(i) An investor in a single-period market with time- 0 wealth may generate any time-1 wealth of the form , where is any element of a vector space of random variables. The investor's objective is to maximize , where is strictly increasing, concave and . Define the utility indifference price of a random variable .
Prove that the map is concave. [You may assume that any supremum is attained.]
(ii) Agent has utility . The agents may buy for time- 0 price a risky asset which will be worth at time 1 , where is random and has density
Assuming zero interest, prove that agent will optimally choose to buy
units of the risky asset at time 0 .
If the asset is in unit net supply, if , and if , prove that the market for the risky asset will clear at price
What happens if