Paper 1, Section I, I

Topics in Analysis
Part II, 2015

Let Ω\Omega be a non-empty bounded open subset of R2\mathbb{R}^{2} with closure Ωˉ\bar{\Omega} and boundary Ω\partial \Omega. Let ϕ:ΩˉR\phi: \bar{\Omega} \rightarrow \mathbb{R} be continuous with ϕ\phi twice differentiable on Ω\Omega.

(i) Why does ϕ\phi have a maximum on Ωˉ\bar{\Omega} ?

(ii) If ϵ>0\epsilon>0 and 2ϕϵ\nabla^{2} \phi \geqslant \epsilon on Ω\Omega, show that ϕ\phi has a maximum on Ω\partial \Omega.

(iii) If 2ϕ0\nabla^{2} \phi \geqslant 0 on Ω\Omega, show that ϕ\phi has a maximum on Ω\partial \Omega.

(iv) If 2ϕ=0\nabla^{2} \phi=0 on Ω\Omega and ϕ=0\phi=0 on Ω\partial \Omega, show that ϕ=0\phi=0 on Ωˉ\bar{\Omega}.