Paper 1, Section II, 37B
An acoustic plane wave (not necessarily harmonic) travels at speed in the direction , where , through an inviscid, compressible fluid of unperturbed density . Show that the velocity is proportional to the perturbation pressure , and find . Define the acoustic intensity .
A harmonic acoustic plane wave with wavevector and unitamplitude perturbation pressure is incident from on a thin elastic membrane at unperturbed position . The regions and are both occupied by gas with density and sound speed . The kinematic boundary conditions at the membrane are those appropriate for an inviscid fluid, and the (linearized) dynamic boundary condition
where and are the tension and mass per unit area of the membrane, and (with ) is its perturbed position. Find the amplitudes of the reflected and transmitted pressure perturbations, expressing your answers in terms of the dimensionless parameter
Hence show that the time-averaged energy flux in the -direction is conserved across the membrane.