Paper 1, Section II, C

Asymptotic Methods
Part II, 2015

(a) State the integral expression for the gamma function Γ(z)\Gamma(z), for Re(z)>0\operatorname{Re}(z)>0, and express the integral

0tγ1eitdt,0<γ<1\int_{0}^{\infty} t^{\gamma-1} e^{i t} d t, \quad 0<\gamma<1

in terms of Γ(γ)\Gamma(\gamma). Explain why the constraints on γ\gamma are necessary.

(b) Show that

0ekt2(t2+t)14dtm=0amkα+βm,k\int_{0}^{\infty} \frac{e^{-k t^{2}}}{\left(t^{2}+t\right)^{\frac{1}{4}}} d t \sim \sum_{m=0}^{\infty} \frac{a_{m}}{k^{\alpha+\beta m}}, \quad k \rightarrow \infty

for some constants am,αa_{m}, \alpha and β\beta. Determine the constants α\alpha and β\beta, and express ama_{m} in terms of the gamma function.

State without proof the basic result needed for the rigorous justification of the above asymptotic formula.

[You may use the identity:

(1+z)α=m=0cmzm,cm=Γ(α+1)m!Γ(α+1m),z<1.]\left.(1+z)^{\alpha}=\sum_{m=0}^{\infty} c_{m} z^{m}, \quad c_{m}=\frac{\Gamma(\alpha+1)}{m ! \Gamma(\alpha+1-m)}, \quad|z|<1 .\right]