Paper 2, Section II, F
Part II, 2015
(i) Define the radical of an ideal.
(ii) Assume the following statement: If is an algebraically closed field and is an ideal, then either or . Prove the Hilbert Nullstellensatz, namely that if with algebraically closed, then
(iii) Show that if is a commutative ring and are ideals, then
(iv) Is
Give a proof or a counterexample.