Paper 2, Section II, F

Algebraic Geometry
Part II, 2015

(i) Define the radical of an ideal.

(ii) Assume the following statement: If kk is an algebraically closed field and II \subseteq k[x1,,xn]k\left[x_{1}, \ldots, x_{n}\right] is an ideal, then either I=(1)I=(1) or Z(I)Z(I) \neq \emptyset. Prove the Hilbert Nullstellensatz, namely that if Ik[x1,,xn]I \subseteq k\left[x_{1}, \ldots, x_{n}\right] with kk algebraically closed, then

I(Z(I))=II(Z(I))=\sqrt{I}

(iii) Show that if AA is a commutative ring and I,JAI, J \subseteq A are ideals, then

IJ=IJ.\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J} .

(iv) Is

I+J=I+J?\sqrt{I+J}=\sqrt{I}+\sqrt{J} ?

Give a proof or a counterexample.