Paper 4, Section II, C
Consider a rigid body with angular velocity , angular momentum and position vector , in its body frame.
(a) Use the expression for the kinetic energy of the body,
to derive an expression for the tensor of inertia of the body, I. Write down the relationship between and .
(b) Euler's equations of torque-free motion of a rigid body are
Working in the frame of the principal axes of inertia, use Euler's equations to show that the energy and the squared angular momentum are conserved.
(c) Consider a cuboid with sides and , and with mass distributed uniformly.
(i) Use the expression for the tensor of inertia derived in (a) to calculate the principal moments of inertia of the body.
(ii) Assume and , and suppose that the initial conditions are such that
with the initial angular velocity perpendicular to the intermediate principal axis . Derive the first order differential equation for in terms of and and hence determine the long-term behaviour of .