Paper 2, Section II, C
(a) Consider a Lagrangian dynamical system with one degree of freedom. Write down the expression for the Hamiltonian of the system in terms of the generalized velocity , momentum , and the Lagrangian . By considering the differential of the Hamiltonian, or otherwise, derive Hamilton's equations.
Show that if is ignorable (cyclic) with respect to the Lagrangian, i.e. , then it is also ignorable with respect to the Hamiltonian.
(b) A particle of charge and mass moves in the presence of electric and magnetic fields such that the scalar and vector potentials are and , where are Cartesian coordinates and are constants. The Lagrangian of the particle is
Starting with the Lagrangian, derive an explicit expression for the Hamiltonian and use Hamilton's equations to determine the motion of the particle.