Paper 2, Section I, C

Cosmology
Part II, 2015

The mass density perturbation equation for non-relativistic matter (Pρc2)\left(P \ll \rho c^{2}\right) with wave number kk in the late universe (t>teq)\left(t>t_{\mathrm{eq}}\right) is

δ¨+2a˙aδ˙(4πGρcs2k2a2)δ=0.\ddot{\delta}+2 \frac{\dot{a}}{a} \dot{\delta}-\left(4 \pi G \rho-\frac{c_{s}^{2} k^{2}}{a^{2}}\right) \delta=0 .

Suppose that a non-relativistic fluid with the equation of state Pρ4/3P \propto \rho^{4 / 3} dominates the universe when a(t)=t2/3a(t)=t^{2 / 3}, and the curvature and the cosmological constant can be neglected. Show that the sound speed can be written in the form cs2(t)dP/dρ=c_{s}^{2}(t) \equiv d P / d \rho= cˉs2t2/3\bar{c}_{s}^{2} t^{-2 / 3} where cˉs\bar{c}_{s} is a constant.

Find power-law solutions to ()(*) of the form δtβ\delta \propto t^{\beta} and hence show that the general solution is

δ=Aktn++Bktn\delta=A_{k} t^{n_{+}}+B_{k} t^{n_{-}}

where

n±=16±[(56)2cˉs2k2]1/2n_{\pm}=-\frac{1}{6} \pm\left[\left(\frac{5}{6}\right)^{2}-\bar{c}_{s}^{2} k^{2}\right]^{1 / 2}

Interpret your solutions in the two regimes kkJk \ll k_{J} and kkJk \gg k_{J} where kJ=56cˉsk_{J}=\frac{5}{6 \bar{c}_{s}}.