Paper 1, Section I, C

Cosmology
Part II, 2015

Consider three galaxies O,AO, A and BB with position vectors rO,rA\mathbf{r}_{O}, \mathbf{r}_{A} and rB\mathbf{r}_{B} in a homogeneous universe. Assuming they move with non-relativistic velocities vO=0,vA\mathbf{v}_{O}=\mathbf{0}, \mathbf{v}_{A} and vB\mathbf{v}_{B}, show that spatial homogeneity implies that the velocity field v(r)\mathbf{v}(\mathbf{r}) satisfies

v(rBrA)=v(rBrO)v(rArO)\mathbf{v}\left(\mathbf{r}_{B}-\mathbf{r}_{A}\right)=\mathbf{v}\left(\mathbf{r}_{B}-\mathbf{r}_{O}\right)-\mathbf{v}\left(\mathbf{r}_{A}-\mathbf{r}_{O}\right)

and hence that v\mathbf{v} is linearly related to r\mathbf{r} by

vi=j=13Hijrjv_{i}=\sum_{j=1}^{3} H_{i j} r_{j}

where the components of the matrix HijH_{i j} are independent of r\mathbf{r}.

Suppose the matrix HijH_{i j} has the form

Hij=Dt(512151215)H_{i j}=\frac{D}{t}\left(\begin{array}{ccc} 5 & -1 & -2 \\ 1 & 5 & -1 \\ 2 & 1 & 5 \end{array}\right)

with D>0D>0 constant. Describe the kinematics of the cosmological expansion.