Paper 3, Section II, B
Part II, 2015
Consider the dynamical system
where is to be regarded as a fixed real constant and as a real parameter.
Find the fixed points of the system and determine the stability of the system linearized about the fixed points. Hence identify the values of at given where bifurcations occur.
Describe informally the concepts of centre manifold theory and apply it to analyse the bifurcations that occur in the above system with . In particular, for each bifurcation derive an equation for the dynamics on the extended centre manifold and hence classify the bifurcation.
What can you say, without further detailed calculation, about the case ?