Paper 2, Section II, B

Dynamical Systems
Part II, 2015

(a) An autonomous dynamical system x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) in R2\mathbb{R}^{2} has a periodic orbit x=X(t)\mathbf{x}=\mathbf{X}(t) with period TT. The linearized evolution of a small perturbation x=X(t)+η(t)\mathbf{x}=\mathbf{X}(t)+\boldsymbol{\eta}(t) is given by ηi(t)=Φij(t)ηj(0)\eta_{i}(t)=\Phi_{i j}(t) \eta_{j}(0). Obtain the differential equation and initial condition satisfied by the matrix Φ(t)\Phi(t).

Define the Floquet multipliers of the orbit. Explain why one of the multipliers is always unity and give a brief argument to show that the other is given by

exp(0Tf(X(t))dt)\exp \left(\int_{0}^{T} \nabla \cdot \mathbf{f}(\mathbf{X}(t)) d t\right)

(b) Use the energy-balance method for nearly Hamiltonian systems to find leading-order approximations to the two limit cycles of the equation

x¨+ϵ(2x˙3+2x34x4x˙x˙)+x=0\ddot{x}+\epsilon\left(2 \dot{x}^{3}+2 x^{3}-4 x^{4} \dot{x}-\dot{x}\right)+x=0

where 0<ϵ10<\epsilon \ll 1.

Determine the stability of each limit cycle, giving reasoning where necessary.

[You may assume that 02πcos4θdθ=3π/4\int_{0}^{2 \pi} \cos ^{4} \theta d \theta=3 \pi / 4 and 02πcos6θdθ=5π/8\int_{0}^{2 \pi} \cos ^{6} \theta d \theta=5 \pi / 8.]