Paper 4, Section II, A

Electrodynamics
Part II, 2015

A point particle of charge qq has trajectory yμ(τ)y^{\mu}(\tau) in Minkowski space, where τ\tau is its proper time. The resulting electromagnetic field is given by the Liénard-Wiechert 4-potential

Aμ(x)=qμ0c4πuμ(τ)Rν(τ)uν(τ), where Rν=xνyν(τ) and uμ=dyμ/dτA^{\mu}(x)=-\frac{q \mu_{0} c}{4 \pi} \frac{u^{\mu}\left(\tau_{*}\right)}{R^{\nu}\left(\tau_{*}\right) u_{\nu}\left(\tau_{*}\right)}, \quad \text { where } \quad R^{\nu}=x^{\nu}-y^{\nu}(\tau) \quad \text { and } \quad u^{\mu}=d y^{\mu} / d \tau

Write down the condition that determines the point yμ(τ)y^{\mu}\left(\tau_{*}\right) on the trajectory of the particle for a given value of xμx^{\mu}. Express this condition in terms of components, setting xμ=(ct,x)x^{\mu}=(c t, \mathbf{x}) and yμ=(ct,y)y^{\mu}=\left(c t^{\prime}, \mathbf{y}\right), and define the retarded time trt_{r}.

Suppose that the 3 -velocity of the particle v(t)=y˙(t)=dy/dt\mathbf{v}\left(t^{\prime}\right)=\dot{\mathbf{y}}\left(t^{\prime}\right)=d \mathbf{y} / d t^{\prime} is small in size compared to cc, and suppose also that r=xyr=|\mathbf{x}| \gg|\mathbf{y}|. Working to leading order in 1/r1 / r and to first order in v\mathbf{v}, show that

ϕ(x)=qμ0c4πr(c+r^v(tr)),A(x)=qμ04πrv(tr), where r^=x/r\phi(x)=\frac{q \mu_{0} c}{4 \pi r}\left(c+\hat{\mathbf{r}} \cdot \mathbf{v}\left(t_{r}\right)\right), \quad \mathbf{A}(x)=\frac{q \mu_{0}}{4 \pi r} \mathbf{v}\left(t_{r}\right), \quad \text { where } \quad \hat{\mathbf{r}}=\mathbf{x} / r

Now assume that trt_{r} can be replaced by t=t(r/c)t_{-}=t-(r / c) in the expressions for ϕ\phi and A\mathbf{A} above. Calculate the electric and magnetic fields to leading order in 1/r1 / r and hence show that the Poynting vector is (in this approximation)

N(x)=q2μ0(4π)2cr^r2r^×v˙(t)2\mathbf{N}(x)=\frac{q^{2} \mu_{0}}{(4 \pi)^{2} c} \frac{\hat{\mathbf{r}}}{r^{2}}\left|\hat{\mathbf{r}} \times \dot{\mathbf{v}}\left(t_{-}\right)\right|^{2}

If the charge qq is performing simple harmonic motion y(t)=Ancosωt\mathbf{y}\left(t^{\prime}\right)=A \mathbf{n} \cos \omega t^{\prime}, where n\mathbf{n} is a unit vector and AωcA \omega \ll c, find the total energy radiated during one period of oscillation.