Paper 3, Section II, 34A

Electrodynamics
Part II, 2015

(i) Consider the action

S=14μ0c(FμνFμν+2λ2AμAμ)d4x+1cAμJμd4xS=-\frac{1}{4 \mu_{0} c} \int\left(F_{\mu \nu} F^{\mu \nu}+2 \lambda^{2} A_{\mu} A^{\mu}\right) d^{4} x+\frac{1}{c} \int A_{\mu} J^{\mu} d^{4} x

where Aμ(x)A_{\mu}(x) is a 4-vector potential, Fμν=μAννAμF_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} is the field strength tensor, Jμ(x)J^{\mu}(x) is a conserved current, and λ0\lambda \geqslant 0 is a constant. Derive the field equation

μFμνλ2Aν=μ0Jν.\partial_{\mu} F^{\mu \nu}-\lambda^{2} A^{\nu}=-\mu_{0} J^{\nu} .

For λ=0\lambda=0 the action SS describes standard electromagnetism. Show that in this case the theory is invariant under gauge transformations of the field Aμ(x)A_{\mu}(x), which you should define. Is the theory invariant under these same gauge transformations when λ>0\lambda>0 ?

Show that when λ>0\lambda>0 the field equation above implies

μμAνλ2Aν=μ0Jν\partial_{\mu} \partial^{\mu} A^{\nu}-\lambda^{2} A^{\nu}=-\mu_{0} J^{\nu}

Under what circumstances does ()(*) hold in the case λ=0\lambda=0 ?

(ii) Now suppose that Aμ(x)A_{\mu}(x) and Jμ(x)J_{\mu}(x) obeying ()(*) reduce to static 3 -vectors A(x)\mathbf{A}(\mathbf{x}) and J(x)\mathbf{J}(\mathbf{x}) in some inertial frame. Show that there is a solution

A(x)=μ0G(xx)J(x)d3x\mathbf{A}(\mathbf{x})=-\mu_{0} \int G\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right) \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} \mathbf{x}^{\prime}

for a suitable Green's function G(R)G(R) with G(R)0G(R) \rightarrow 0 as RR \rightarrow \infty. Determine G(R)G(R) for any λ0\lambda \geqslant 0. [Hint: You may find it helpful to consider first the case λ=0\lambda=0 and then the case λ>0\lambda>0, using the result 2(1Rf(R))=2(1R)f(R)+1Rf(R)\nabla^{2}\left(\frac{1}{R} f(R)\right)=\nabla^{2}\left(\frac{1}{R}\right) f(R)+\frac{1}{R} f^{\prime \prime}(R), where R=xx.]\left.R=\left|\mathbf{x}-\mathbf{x}^{\prime}\right| .\right]

If J(x)\mathbf{J}(\mathbf{x}) is zero outside some bounded region, comment on the effect of the value of λ\lambda on the behaviour of A(x)\mathbf{A}(\mathbf{x}) when x|\mathbf{x}| is large. [No further detailed calculations are required.]