Paper 1, Section II, B
Part II, 2015
Consider the differential equation
where and are constants with and . Laplace's method for finding solutions involves writing
for some suitable contour and some suitable function . Determine for the equation and use a clearly labelled diagram to specify contours giving two independent solutions when is real in each of the cases and .
Now let and . Find explicit expressions for two independent solutions to . Find, in addition, a solution with .