Paper 4, Section II,
Part II, 2015
(i) Prove that a finite solvable extension of fields of characteristic zero is a radical extension.
(ii) Let be variables, , and where are the elementary symmetric polynomials in the variables . Is there an element such that but ? Justify your answer.
(iii) Find an example of a field extension of degree two such that for any . Give an example of a field which has no extension containing an primitive root of unity.