Paper 2, Section II, F

Galois Theory
Part II, 2015

(i) State the fundamental theorem of Galois theory, without proof. Let LL be a splitting field of t32Q[t]t^{3}-2 \in \mathbb{Q}[t]. Show that QL\mathbb{Q} \subseteq L is Galois and that Gal (L/Q)(L / \mathbb{Q}) has a subgroup which is not normal.

(ii) Let Φ8\Phi_{8} be the 8 th cyclotomic polynomial and denote its image in F7[t]\mathbb{F}_{7}[t] again by Φ8\Phi_{8}. Show that Φ8\Phi_{8} is not irreducible in F7[t]\mathbb{F}_{7}[t].

(iii) Let mm and nn be coprime natural numbers, and let μm=exp(2πi/m)\mu_{m}=\exp (2 \pi i / m) and μn=exp(2πi/n)\mu_{n}=\exp (2 \pi i / n) where i=1i=\sqrt{-1}. Show that Q(μm)Q(μn)=Q\mathbb{Q}\left(\mu_{m}\right) \cap \mathbb{Q}\left(\mu_{n}\right)=\mathbb{Q}.