Paper 3, Section II, D

General Relativity
Part II, 2015

Let Γbca\Gamma_{b c}^{a} be the Levi-Civita connection and RbcdaR_{b c d}^{a} the Riemann tensor corresponding to a metric gab(x)g_{a b}(x), and let Γ~bca\widetilde{\Gamma}_{b c}^{a} be the Levi-Civita connection and R~bcda\widetilde{R}_{b c d}^{a} the Riemann tensor corresponding to a metric g~ab(x)\tilde{g}_{a b}(x). Let Tbca=Γ~bcaΓbcaT_{b c}^{a}=\widetilde{\Gamma}_{b c}^{a}-\Gamma_{b c}^{a}.

(a) Show that TbcaT_{b c}^{a} is a tensor.

(b) Using local inertial coordinates for the metric gabg_{a b}, or otherwise, show that

R~bcdaRbcda=2Tb[d;c]a2Te[daTc]be\widetilde{R}_{b c d}^{a}-R_{b c d}^{a}=2 T_{b[d ; c]}^{a}-2 T_{e[d}^{a} T_{c] b}^{e}

holds in all coordinate systems, where the semi-colon denotes covariant differentiation using the connection Γbca\Gamma_{b c}^{a}. [You may assume that Rbcda=2Γb[d,c]a2Γe[daΓc]beR_{b c d}^{a}=2 \Gamma_{b[d, c]}^{a}-2 \Gamma_{e[d}^{a} \Gamma_{c] b}^{e}.]

(c) In the case that Tbca=agbcT_{b c}^{a}=\ell^{a} g_{b c} for some vector field a\ell^{a}, show that R~bd=Rbd\widetilde{R}_{b d}=R_{b d} if and only if

b;d+bd=0\ell_{b ; d}+\ell_{b} \ell_{d}=0

(d) Using the result that [a;b]=0\ell_{[a ; b]}=0 if and only if a=ϕ,a\ell_{a}=\phi_{, a} for some scalar field ϕ\phi, show that the condition on a\ell_{a} in part (c) can be written as

ka;b=0k_{a ; b}=0

for a certain covector field kak_{a}, which you should define.