Paper 2, Section II, I

Graph Theory
Part II, 2015

(a) Define the Ramsey numbers R(s,t)R(s, t) and R(s)R(s) for integers s,t2s, t \geqslant 2. Show that R(s,t)R(s, t) exists for all s,t2s, t \geqslant 2 and that if s,t3s, t \geqslant 3 then R(s,t)R(s1,t)+R(s,t1)R(s, t) \leqslant R(s-1, t)+R(s, t-1).

(b) Show that, as ss \rightarrow \infty, we have R(s)=O(4s)R(s)=O\left(4^{s}\right) and R(s)=Ω(2s/2)R(s)=\Omega\left(2^{s / 2}\right).

(c) Show that, as tt \rightarrow \infty, we have R(3,t)=O(t2)R(3, t)=O\left(t^{2}\right) and R(3,t)=Ω((tlogt)3/2)R(3, t)=\Omega\left(\left(\frac{t}{\log t}\right)^{3 / 2}\right).

[Hint: For the lower bound in (c), you may wish to begin by modifying a random graph to show that for all nn and pp we have

R(3,t)>n(n3)p3(nt)(1p)(t2)R(3, t)>n-\left(\begin{array}{l} n \\ 3 \end{array}\right) p^{3}-\left(\begin{array}{c} n \\ t \end{array}\right)(1-p)\left(\begin{array}{c} t \\ 2 \end{array}\right)