Paper 3, Section II, G

Linear Analysis
Part II, 2015

State and prove the Baire Category Theorem. [Choose any version you like.]

An isometry from a metric space (M,d)(M, d) to another metric space (N,e)(N, e) is a function φ:MN\varphi: M \rightarrow N such that e(φ(x),φ(y))=d(x,y)e(\varphi(x), \varphi(y))=d(x, y) for all x,yMx, y \in M. Prove that there exists no isometry from the Euclidean plane 22\ell_{2}^{2} to the Banach space c0c_{0} of sequences converging to 0 . [Hint: Assume φ:22c0\varphi: \ell_{2}^{2} \rightarrow \mathrm{c}_{0} is an isometry. For nNn \in \mathbb{N} and x22x \in \ell_{2}^{2} let φn(x)\varphi_{n}(x) denote the nth n^{\text {th }}coordinate of φ(x)\varphi(x). Consider the sets FnF_{n} consisting of all pairs (x,y)(x, y) with x2=y2=1\|x\|_{2}=\|y\|_{2}=1 and φ(x)φ(y)=φn(x)φn(y)\|\varphi(x)-\varphi(y)\|_{\infty}=\left|\varphi_{n}(x)-\varphi_{n}(y)\right|.]

Show that for each nNn \in \mathbb{N} there is a linear isometry 1nc0\ell_{1}^{n} \rightarrow \mathrm{c}_{0}.