Paper 2, Section II, G

Linear Analysis
Part II, 2015

(a) Let T:XYT: X \rightarrow Y be a linear map between normed spaces. What does it mean to say that TT is bounded? Show that TT is bounded if and only if TT is continuous. Define the operator norm of TT and show that the set B(X,Y)\mathcal{B}(X, Y) of all bounded, linear maps from XX to YY is a normed space in the operator norm.

(b) For each of the following linear maps TT, determine if TT is bounded. When TT is bounded, compute its operator norm and establish whether TT is compact. Justify your answers. Here f=supt[0,1]f(t)\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)| for fC[0,1]f \in C[0,1] and f=f+f\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} for fC1[0,1]f \in C^{1}[0,1].

(i) T:(C1[0,1],)(C1[0,1],),T(f)=fT:\left(C^{1}[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C^{1}[0,1],\|\cdot\|\right), T(f)=f.

(ii) T:(C1[0,1],)(C[0,1],),T(f)=fT:\left(C^{1}[0,1],\|\cdot\|\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right), T(f)=f.

(iii) T:(C1[0,1],)(C[0,1],),T(f)=fT:\left(C^{1}[0,1],\|\cdot\|\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right), T(f)=f^{\prime}.

(iv) T:(C[0,1],)R,T(f)=01f(t)h(t)dtT:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}, T(f)=\int_{0}^{1} f(t) h(t) d t, where hh is a given element of C[0,1]C[0,1]. [Hint: Consider first the case that h(x)0h(x) \neq 0 for every x[0,1]x \in[0,1], and apply TT to a suitable function. In the general case apply TT to a suitable sequence of functions.]