Paper 4, Section II, E

Mathematical Biology
Part II, 2015

In a stochastic model of multiple populations, P=P(x,t)P=P(\mathbf{x}, t) is the probability that the population sizes are given by the vector x\mathbf{x} at time tt. The jump rate W(x,r)W(\mathbf{x}, \mathbf{r}) is the probability per unit time that the population sizes jump from x\mathbf{x} to x+r\mathbf{x}+\mathbf{r}. Under suitable assumptions, the system may be approximated by the multivariate Fokker-Planck equation (with summation convention)

tP=xiAiP+122xixjBijP\frac{\partial}{\partial t} P=-\frac{\partial}{\partial x_{i}} A_{i} P+\frac{1}{2} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} B_{i j} P

where Ai(x)=rriW(x,r)A_{i}(\mathbf{x})=\sum_{\mathbf{r}} r_{i} W(\mathbf{x}, \mathbf{r}) and matrix elements Bij(x)=rrirjW(x,r)B_{i j}(\mathbf{x})=\sum_{\mathbf{r}} r_{i} r_{j} W(\mathbf{x}, \mathbf{r}).

(a) Use the multivariate Fokker-Planck equation to show that

ddtxk=Akddtxkxl=xlAk+xkAl+Bkl\begin{aligned} \frac{d}{d t}\left\langle x_{k}\right\rangle &=\left\langle A_{k}\right\rangle \\ \frac{d}{d t}\left\langle x_{k} x_{l}\right\rangle &=\left\langle x_{l} A_{k}+x_{k} A_{l}+B_{k l}\right\rangle \end{aligned}

[You may assume that P(x,t)0P(\mathbf{x}, t) \rightarrow 0 as x|\mathbf{x}| \rightarrow \infty.]

(b) For small fluctuations, you may assume that the vector A\mathbf{A} may be approximated by a linear function in x\mathbf{x} and the matrix B\mathbf{B} may be treated as constant, i.e. Ak(x)A_{k}(\mathbf{x}) \approx akl(xlxl)a_{k l}\left(x_{l}-\left\langle x_{l}\right\rangle\right) and Bkl(x)Bkl(x)=bklB_{k l}(\mathbf{x}) \approx B_{k l}(\langle\mathbf{x}\rangle)=b_{k l} (where akla_{k l} and bklb_{k l} are constants). Show that at steady state the covariances Cij=cov(xi,xj)C_{i j}=\operatorname{cov}\left(x_{i}, x_{j}\right) satisfy

aikCjk+ajkCik+bij=0.a_{i k} C_{j k}+a_{j k} C_{i k}+b_{i j}=0 .

(c) A lab-controlled insect population consists of x1x_{1} larvae and x2x_{2} adults. Larvae are added to the system at rate λ\lambda. Larvae each mature at rate γ\gamma per capita. Adults die at rate β\beta per capita. Give the vector A\mathbf{A} and matrix B\mathbf{B} for this model. Show that at steady state

x1=λγ,x2=λβ.\left\langle x_{1}\right\rangle=\frac{\lambda}{\gamma}, \quad\left\langle x_{2}\right\rangle=\frac{\lambda}{\beta} .

(d) Find the variance of each population size near steady state, and show that the covariance between the populations is zero.