Paper 1, Section II, 16H16 \mathrm{H}

Number Fields
Part II, 2015

(a) Let KK be a number field, and ff a monic polynomial whose coefficients are in OK\mathcal{O}_{K}. Let MM be a field containing KK and αM\alpha \in M. Show that if f(α)=0f(\alpha)=0, then α\alpha is an algebraic integer.

Hence conclude that if hK[x]h \in K[x] is monic, with hnOK[x]h^{n} \in \mathcal{O}_{K}[x], then hOK[x]h \in \mathcal{O}_{K}[x].

(b) Compute an integral basis for OQ(α)\mathcal{O}_{\mathbb{Q}(\alpha)} when the minimum polynomial of α\alpha is x3x4x^{3}-x-4.