Paper 2, Section II, A

Applications of Quantum Mechanics
Part II, 2015

A beam of particles of mass mm and energy 2k2/2m\hbar^{2} k^{2} / 2 m is incident on a target at the origin described by a spherically symmetric potential V(r)V(r). Assuming the potential decays rapidly as rr \rightarrow \infty, write down the asymptotic form of the wavefunction, defining the scattering amplitude f(θ)f(\theta).

Consider a free particle with energy 2k2/2m\hbar^{2} k^{2} / 2 m. State, without proof, the general axisymmetric solution of the Schrödinger equation for r>0r>0 in terms of spherical Bessel and Neumann functions jj_{\ell} and nn_{\ell}, and Legendre polynomials P(=0,1,2,)P_{\ell}(\ell=0,1,2, \ldots). Hence define the partial wave phase shifts δ\delta_{\ell} for scattering from a potential V(r)V(r) and derive the partial wave expansion for f(θ)f(\theta) in terms of phase shifts.

Now suppose

V(r)={2γ2/2mr<a0r>aV(r)=\left\{\begin{array}{cc} \hbar^{2} \gamma^{2} / 2 m & r<a \\ 0 & r>a \end{array}\right.

with γ>k\gamma>k. Show that the S-wave phase shift δ0\delta_{0} obeys

tanh(κa)κa=tan(ka+δ0)ka\frac{\tanh (\kappa a)}{\kappa a}=\frac{\tan \left(k a+\delta_{0}\right)}{k a}

where κ2=γ2k2\kappa^{2}=\gamma^{2}-k^{2}. Deduce that for an S-wave solution

ftanhγaγaγ as k0f \rightarrow \frac{\tanh \gamma a-\gamma a}{\gamma} \quad \text { as } \quad k \rightarrow 0

[You may assume : exp(ikrcosθ)==0(2+1)ij(kr)P(cosθ)\quad \exp (i k r \cos \theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta)

and j(ρ)1ρsin(ρπ/2),n(ρ)1ρcos(ρπ/2)j_{\ell}(\rho) \sim \frac{1}{\rho} \sin (\rho-\ell \pi / 2), \quad n_{\ell}(\rho) \sim-\frac{1}{\rho} \cos (\rho-\ell \pi / 2) \quad as ρ.]\left.\quad \rho \rightarrow \infty .\right]