Paper 2, Section I, H

Number Theory
Part II, 2015

Define the Euler totient function ϕ\phi and the Möbius function μ\mu. Suppose ff and gg are functions defined on the natural numbers satisfying f(n)=dng(d)f(n)=\sum_{d \mid n} g(d). State and prove a formula for gg in terms of ff. Find a relationship between μ\mu and ϕ\phi.

Define the Riemann zeta function ζ(s)\zeta(s). Find a Dirichlet series for ζ(s1)/ζ(s)\zeta(s-1) / \zeta(s) valid for Re(s)>2\operatorname{Re}(s)>2.