Paper 4, Section II, A

Applications of Quantum Mechanics
Part II, 2016

Let ΛR2\Lambda \subset \mathbb{R}^{2} be a Bravais lattice. Define the dual lattice Λ\Lambda^{*} and show that

V(x)=qΛVqexp(iqx)V(\mathbf{x})=\sum_{\mathbf{q} \in \Lambda^{*}} V_{\mathbf{q}} \exp (i \mathbf{q} \cdot \mathbf{x})

obeys V(x+l)=V(x)V(\mathbf{x}+l)=V(\mathbf{x}) for all lΛl \in \Lambda, where VqV_{\mathbf{q}} are constants. Suppose V(x)V(\mathbf{x}) is the potential for a particle of mass mm moving in a two-dimensional crystal that contains a very large number of lattice sites of Λ\Lambda and occupies an area A\mathcal{A}. Adopting periodic boundary conditions, plane-wave states k|\mathbf{k}\rangle can be chosen such that

xk=1A1/2exp(ikx) and kk=δkk\langle\mathbf{x} \mid \mathbf{k}\rangle=\frac{1}{\mathcal{A}^{1 / 2}} \exp (i \mathbf{k} \cdot \mathbf{x}) \quad \text { and } \quad\left\langle\mathbf{k} \mid \mathbf{k}^{\prime}\right\rangle=\delta_{\mathbf{k} \mathbf{k}^{\prime}}

The allowed wavevectors k\mathbf{k} are closely spaced and include all vectors in Λ\Lambda^{*}. Find an expression for the matrix element kV(x)k\left\langle\mathbf{k}|V(\mathbf{x})| \mathbf{k}^{\prime}\right\rangle in terms of the coefficients VqV_{\mathbf{q}}. [You need not discuss additional details of the boundary conditions.]

Now suppose that V(x)=λU(x)V(\mathbf{x})=\lambda U(\mathbf{x}), where λ1\lambda \ll 1 is a dimensionless constant. Find the energy E(k)E(\mathbf{k}) for a particle with wavevector k\mathbf{k} to order λ2\lambda^{2} in non-degenerate perturbation theory. Show that this expansion in λ\lambda breaks down on the Bragg lines in k-space defined by the condition

kq=12q2 for qΛ\mathbf{k} \cdot \mathbf{q}=\frac{1}{2}|\mathbf{q}|^{2} \quad \text { for } \quad \mathbf{q} \in \Lambda^{*}

and explain briefly, without additional calculations, the significance of this for energy levels in the crystal.

Consider the particular case in which Λ\Lambda has primitive vectors

a1=2π(i+13j),a2=2π23j\mathbf{a}_{1}=2 \pi\left(\mathbf{i}+\frac{1}{\sqrt{3}} \mathbf{j}\right), \quad \mathbf{a}_{2}=2 \pi \frac{2}{\sqrt{3}} \mathbf{j}

where i\mathbf{i} and j\mathbf{j} are orthogonal unit vectors. Determine the polygonal region in k\mathbf{k}-space corresponding to the lowest allowed energy band.