Paper 1, Section II, B
Part II, 2016
(a) Consider the periodic function
on the interval . The -point discrete Fourier transform of is defined by
where and . Compute , using the Fast Fourier Transform (FFT). Compare your result with what you get by computing directly from . Carefully explain all your computations.
(b) Now let be any analytic function on that is periodic with period 1 . The continuous Fourier transform of is defined by
Use integration by parts to show that the Fourier coefficients decay spectrally.
Explain what it means for the discrete Fourier transform of to approximate the continuous Fourier transform with spectral accuracy. Prove that it does so.
What can you say about the behaviour of as for fixed ?