(a) State and prove the Cramér-Rao inequality in a parametric model {f(θ):θ∈Θ}, where Θ⊆R. [Necessary regularity conditions on the model need not be specified.]
(b) Let X1,…,Xn be i.i.d. Poisson random variables with unknown parameter EX1=θ>0. For Xˉn=(1/n)∑i=1nXi and S2=(n−1)−1∑i=1n(Xi−Xˉn)2 define
Tα=αXˉn+(1−α)S2,0⩽α⩽1
Show that Varθ(Tα)⩾Varθ(Xˉn) for all values of α,θ.
Now suppose θ~=θ~(X1,…,Xn) is an estimator of θ with possibly nonzero bias B(θ)=Eθθ~−θ. Suppose the function B is monotone increasing on (0,∞). Prove that the mean-squared errors satisfy
Eθ(θ~n−θ)2⩾Eθ(Xˉn−θ)2 for all θ∈Θ