Paper 2, Section II,

Principles of Statistics
Part II, 2016

(a) State and prove the Cramér-Rao inequality in a parametric model {f(θ):θΘ}\{f(\theta): \theta \in \Theta\}, where ΘR\Theta \subseteq \mathbb{R}. [Necessary regularity conditions on the model need not be specified.]

(b) Let X1,,XnX_{1}, \ldots, X_{n} be i.i.d. Poisson random variables with unknown parameter EX1=θ>0E X_{1}=\theta>0. For Xˉn=(1/n)i=1nXi\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i} and S2=(n1)1i=1n(XiXˉn)2S^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} define

Tα=αXˉn+(1α)S2,0α1T_{\alpha}=\alpha \bar{X}_{n}+(1-\alpha) S^{2}, \quad 0 \leqslant \alpha \leqslant 1

Show that Varθ(Tα)Varθ(Xˉn)\operatorname{Var}_{\theta}\left(T_{\alpha}\right) \geqslant \operatorname{Var}_{\theta}\left(\bar{X}_{n}\right) for all values of α,θ\alpha, \theta.

Now suppose θ~=θ~(X1,,Xn)\tilde{\theta}=\tilde{\theta}\left(X_{1}, \ldots, X_{n}\right) is an estimator of θ\theta with possibly nonzero bias B(θ)=Eθθ~θB(\theta)=E_{\theta} \tilde{\theta}-\theta. Suppose the function BB is monotone increasing on (0,)(0, \infty). Prove that the mean-squared errors satisfy

Eθ(θ~nθ)2Eθ(Xˉnθ)2 for all θΘE_{\theta}\left(\tilde{\theta}_{n}-\theta\right)^{2} \geqslant E_{\theta}\left(\bar{X}_{n}-\theta\right)^{2} \text { for all } \theta \in \Theta