Derive the maximum likelihood estimator θ ^ n \hat{\theta}_{n} θ ^ n    based on independent observations X 1 , … , X n X_{1}, \ldots, X_{n} X 1  , … , X n    that are identically distributed as N ( θ , 1 ) N(\theta, 1) N ( θ , 1 )  , where the unknown parameter θ \theta θ   lies in the parameter space Θ = R \Theta=\mathbb{R} Θ = R  . Find the limiting distribution of n ( θ ^ n − θ ) \sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) n  ( θ n  − θ )   as n → ∞ n \rightarrow \infty n → ∞  .
Now define
θ ~ n = θ ^ n  whenever  ∣ θ ^ n ∣ > n − 1 / 4 , = 0  otherwise,  \begin{array}{rll} \tilde{\theta}_{n} & =\widehat{\theta}_{n} & \text { whenever }\left|\widehat{\theta}_{n}\right|>n^{-1 / 4}, \\ & =0 & \text { otherwise, } \end{array} θ ~ n   = θ n  = 0   whenever  ∣ ∣ ∣ ∣  θ n  ∣ ∣ ∣ ∣  > n − 1 / 4 ,  otherwise,   
= 0  otherwise,  \begin{aligned} & =0 \text { otherwise, } \end{aligned}  = 0  otherwise,   
and find the limiting distribution of n ( θ ~ n − θ ) \sqrt{n}\left(\tilde{\theta}_{n}-\theta\right) n  ( θ ~ n  − θ )   as n → ∞ n \rightarrow \infty n → ∞  .
Calculate
lim  n → ∞ sup  θ ∈ Θ n E θ ( T n − θ ) 2 \lim _{n \rightarrow \infty} \sup _{\theta \in \Theta} n E_{\theta}\left(T_{n}-\theta\right)^{2} n → ∞ lim  θ ∈ Θ sup  n E θ  ( T n  − θ ) 2 
for the choices T n = θ ^ n T_{n}=\widehat{\theta}_{n} T n  = θ n    and T n = θ ~ n T_{n}=\widetilde{\theta}_{n} T n  = θ n   . Based on the above findings, which estimator T n T_{n} T n    of θ \theta θ   would you prefer? Explain your answer.
[Throughout, you may use standard facts of stochastic convergence, such as the central limit theorem, provided they are clearly stated.]