Paper 3, Section II, I

Representation Theory
Part II, 2016

(a) Let the finite group GG act on a finite set XX and let π\pi be the permutation character. If GG is 2 -transitive on XX, show that π=1G+χ\pi=1_{G}+\chi, where χ\chi is an irreducible character of GG.

(b) Let n4n \geqslant 4, and let GG be the symmetric group SnS_{n} acting naturally on the set X={1,,n}X=\{1, \ldots, n\}. For any integer rn/2r \leqslant n / 2, write XrX_{r} for the set of all rr-element subsets of XX, and let πr\pi_{r} be the permutation character of the action of GG on XrX_{r}. Compute the degree of πr\pi_{r}. If 0kn/20 \leqslant \ell \leqslant k \leqslant n / 2, compute the character inner product πk,π\left\langle\pi_{k}, \pi_{\ell}\right\rangle.

Let m=n/2m=n / 2 if nn is even, and m=(n1)/2m=(n-1) / 2 if nn is odd. Deduce that SnS_{n} has distinct irreducible characters χ(n)=1G,χ(n1,1),χ(n2,2),,χ(nm,m)\chi^{(n)}=1_{G}, \chi^{(n-1,1)}, \chi^{(n-2,2)}, \ldots, \chi^{(n-m, m)} such that for all rmr \leqslant m,

πr=χ(n)+χ(n1,1)+χ(n2,2)++χ(nr,r)\pi_{r}=\chi^{(n)}+\chi^{(n-1,1)}+\chi^{(n-2,2)}+\cdots+\chi^{(n-r, r)}

(c) Let Ω\Omega be the set of all ordered pairs (i,j)(i, j) with i,j{1,2,,n}i, j \in\{1,2, \ldots, n\} and iji \neq j. Let SnS_{n} act on Ω\Omega in the obvious way. Write π(n2,1,1)\pi^{(n-2,1,1)} for the permutation character of SnS_{n} in this action. By considering inner products, or otherwise, prove that

π(n2,1,1)=1+2χ(n1,1)+χ(n2,2)+ψ\pi^{(n-2,1,1)}=1+2 \chi^{(n-1,1)}+\chi^{(n-2,2)}+\psi

where ψ\psi is an irreducible character. Calculate the degree of ψ\psi, and calculate its value on the elements (12)\left(\begin{array}{ll}1 & 2\end{array}\right) and (123))\left(\begin{array}{lll}1 & 2 & 3)\end{array}\right) of SnS_{n}.