Paper 3, Section II, C

Statistical Physics
Part II, 2016

(a) Consider an ideal gas consisting of NN identical classical particles of mass mm moving freely in a volume VV with Hamiltonian H=p2/2mH=|\mathbf{p}|^{2} / 2 m. Show that the partition function of the gas has the form

Zideal =VNλ3NN!Z_{\text {ideal }}=\frac{V^{N}}{\lambda^{3 N} N !}

and find λ\lambda as a function of the temperature TT.

[You may assume that eax2dx=π/a\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\pi / a} for a>0a>0.]

(b) A monatomic gas of interacting particles is a modification of an ideal gas where any pair of particles with separation rr interact through a potential energy U(r)U(r). The partition function for this gas can be written as

Z=Zideal [1+2πNV0f(r)r2dr]NZ=Z_{\text {ideal }}\left[1+\frac{2 \pi N}{V} \int_{0}^{\infty} f(r) r^{2} d r\right]^{N}

where f(r)=eβU(r)1,β=1/(kBT)f(r)=e^{-\beta U(r)}-1, \quad \beta=1 /\left(k_{B} T\right). The virial expansion of the equation of state for small densities N/VN / V is

pkBT=NV+B2(T)N2V2+O(N3V3)\frac{p}{k_{B} T}=\frac{N}{V}+B_{2}(T) \frac{N^{2}}{V^{2}}+\mathcal{O}\left(\frac{N^{3}}{V^{3}}\right)

Using the free energy, show that

B2(T)=2π0f(r)r2drB_{2}(T)=-2 \pi \int_{0}^{\infty} f(r) r^{2} d r

(c) The Lennard-Jones potential is

U(r)=ϵ(r012r122r06r6)U(r)=\epsilon\left(\frac{r_{0}^{12}}{r^{12}}-2 \frac{r_{0}^{6}}{r^{6}}\right)

where ϵ\epsilon and r0r_{0} are positive constants. Find the separation σ\sigma where U(σ)=0U(\sigma)=0 and the separation rminr_{\min } where U(r)U(r) has its minimum. Sketch the graph of U(r)U(r). Calculate B2(T)B_{2}(T) for this potential using the approximations

f(r)=eβU(r)1{1 for r<σβU(r) for rσf(r)=e^{-\beta U(r)}-1 \simeq \begin{cases}-1 & \text { for } \quad r<\sigma \\ -\beta U(r) & \text { for } r \geqslant \sigma\end{cases}