Paper 4, Section II, J

Applied Probability
Part II, 2016

(a) Give the definition of a renewal process. Let (Nt)t0\left(N_{t}\right)_{t \geqslant 0} be a renewal process associated with (ξi)\left(\xi_{i}\right) with Eξ1=1/λ<\mathbb{E} \xi_{1}=1 / \lambda<\infty. Show that almost surely

Nttλ as t\frac{N_{t}}{t} \rightarrow \lambda \quad \text { as } t \rightarrow \infty

(b) Give the definition of Kingman's nn-coalescent. Let τ\tau be the first time that all blocks have coalesced. Find an expression for Eeqτ\mathbb{E} e^{-q \tau}. Let LnL_{n} be the total length of the branches of the tree, i.e., if τi\tau_{i} is the first time there are ii lineages, then Ln=L_{n}= i=2ni(τi1τi)\sum_{i=2}^{n} i\left(\tau_{i-1}-\tau_{i}\right). Show that ELn2logn\mathbb{E} L_{n} \sim 2 \log n as nn \rightarrow \infty. Show also that Var(Ln)C\operatorname{Var}\left(L_{n}\right) \leqslant C for all nn, where CC is a positive constant, and that in probability

LnELn1 as n\frac{L_{n}}{\mathbb{E} L_{n}} \rightarrow 1 \quad \text { as } n \rightarrow \infty