Paper 4, Section II, H

Topics in Analysis
Part II, 2016

Explain briefly how a positive irrational number xx gives rise to a continued fraction

a0+1a1+1a2+1a3+a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}

with the aja_{j} non-negative integers and aj1a_{j} \geqslant 1 for j1j \geqslant 1.

Show that, if we write

(pnpn1qnqn1)=(a0110)(a1110)(an1110)(an110)\left(\begin{array}{ll} p_{n} & p_{n-1} \\ q_{n} & q_{n-1} \end{array}\right)=\left(\begin{array}{cc} a_{0} & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} a_{1} & 1 \\ 1 & 0 \end{array}\right) \cdots\left(\begin{array}{cc} a_{n-1} & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} a_{n} & 1 \\ 1 & 0 \end{array}\right)

then

pnqn=a0+1a1+1a2+1an1+1an\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}

for n0n \geqslant 0.

Use the observation [which need not be proved] that xx lies between pn/qnp_{n} / q_{n} and pn+1/qn+1p_{n+1} / q_{n+1} to show that

pn/qnx1/qnqn+1\left|p_{n} / q_{n}-x\right| \leqslant 1 / q_{n} q_{n+1}

Show that qnFnq_{n} \geqslant F_{n} where FnF_{n} is the nnth Fibonacci number (thus F0=F1=1F_{0}=F_{1}=1, Fn+2=Fn+1+Fn)\left.F_{n+2}=F_{n+1}+F_{n}\right), and conclude that

pnqnx1FnFn+1\left|\frac{p_{n}}{q_{n}}-x\right| \leqslant \frac{1}{F_{n} F_{n+1}}