Paper 4, Section II, D

Waves
Part II, 2016

A duck swims at a constant velocity (V,0)(-V, 0), where V>0V>0, on the surface of infinitely deep water. Surface tension can be neglected, and the dispersion relation for the linear surface water waves (relative to fluid at rest) is ω2=gk\omega^{2}=g|\mathbf{k}|. Show that the wavevector k\mathbf{k} of a plane harmonic wave that is steady in the duck's frame, i.e. of the form

Re[Aei(k1x+k2y)]\operatorname{Re}\left[A e^{i\left(k_{1} x^{\prime}+k_{2} y\right)}\right]

where x=x+Vtx^{\prime}=x+V t and yy are horizontal coordinates relative to the duck, satisfies

(k1,k2)=gV2p2+1(1,p)\left(k_{1}, k_{2}\right)=\frac{g}{V^{2}} \sqrt{p^{2}+1}(1, p)

where k^=(cosϕ,sinϕ)\hat{\mathbf{k}}=(\cos \phi, \sin \phi) and p=tanϕp=\tan \phi. [You may assume that ϕ<π/2.|\phi|<\pi / 2 . ]

Assume that the wave pattern behind the duck can be regarded as a Fourier superposition of such steady waves, i.e., the surface elevation η\eta at (x,y)=R(cosθ,sinθ)\left(x^{\prime}, y\right)=R(\cos \theta, \sin \theta) has the form

η=ReA(p)eiλh(p;θ)dp for θ<12π\eta=\operatorname{Re} \int_{-\infty}^{\infty} A(p) e^{i \lambda h(p ; \theta)} \mathrm{d} p \quad \text { for }|\theta|<\frac{1}{2} \pi

where

λ=gRV2,h(p;θ)=p2+1(cosθ+psinθ)\lambda=\frac{g R}{V^{2}}, \quad h(p ; \theta)=\sqrt{p^{2}+1}(\cos \theta+p \sin \theta)

Show that, in the limit λ\lambda \rightarrow \infty at fixed θ\theta with 0<θ<cot1(22)0<\theta<\cot ^{-1}(2 \sqrt{2}),

η2πλRe{A(p+)hpp(p+;θ)ei(λh(p+;θ)+14π)+A(p)hpp(p;θ)ei(λh(p;θ)14π)},\eta \sim \sqrt{\frac{2 \pi}{\lambda}} \operatorname{Re}\left\{\frac{A\left(p_{+}\right)}{\sqrt{h_{p p}\left(p_{+} ; \theta\right)}} e^{i\left(\lambda h\left(p_{+} ; \theta\right)+\frac{1}{4} \pi\right)}+\frac{A\left(p_{-}\right)}{\sqrt{-h_{p p}\left(p_{-} ; \theta\right)}} e^{i\left(\lambda h\left(p_{-} ; \theta\right)-\frac{1}{4} \pi\right)}\right\},

where

p±=14cotθ±14cot2θ8p_{\pm}=-\frac{1}{4} \cot \theta \pm \frac{1}{4} \sqrt{\cot ^{2} \theta-8}

and hpph_{p p} denotes 2h/p2\partial^{2} h / \partial p^{2}. Briefly interpret this result in terms of what is seen.

Without doing detailed calculations, briefly explain what is seen as λ\lambda \rightarrow \infty at fixed θ\theta with cot1(22)<θ<π/2\cot ^{-1}(2 \sqrt{2})<\theta<\pi / 2. Very briefly comment on the case θ=cot1(22)\theta=\cot ^{-1}(2 \sqrt{2}).

[Hint: You may find the following results useful.

hp={pcosθ+(2p2+1)sinθ}(p2+1)1/2hpp=(cosθ+4psinθ)(p2+1)1/2{pcosθ+(2p2+1)sinθ}p(p2+1)3/2]\begin{gathered} h_{p}=\left\{p \cos \theta+\left(2 p^{2}+1\right) \sin \theta\right\}\left(p^{2}+1\right)^{-1 / 2} \\ \left.h_{p p}=(\cos \theta+4 p \sin \theta)\left(p^{2}+1\right)^{-1 / 2}-\left\{p \cos \theta+\left(2 p^{2}+1\right) \sin \theta\right\} p\left(p^{2}+1\right)^{-3 / 2} \cdot\right] \end{gathered}