Paper 2, Section II, C

Asymptotic Methods
Part II, 2016

What is meant by the asymptotic relation

f(z)g(z) as zz0,Arg(zz0)(θ0,θ1)?f(z) \sim g(z) \quad \text { as } \quad z \rightarrow z_{0}, \operatorname{Arg}\left(z-z_{0}\right) \in\left(\theta_{0}, \theta_{1}\right) ?

Show that

sinh(z1)12exp(z1) as z0,Argz(π/2,π/2),\sinh \left(z^{-1}\right) \sim \frac{1}{2} \exp \left(z^{-1}\right) \quad \text { as } \quad z \rightarrow 0, \operatorname{Arg} z \in(-\pi / 2, \pi / 2),

and find the corresponding result in the sector Argz(π/2,3π/2)\operatorname{Arg} z \in(\pi / 2,3 \pi / 2).

What is meant by the asymptotic expansion

f(z)j=0cj(zz0)j as zz0,Arg(zz0)(θ0,θ1)?f(z) \sim \sum_{j=0}^{\infty} c_{j}\left(z-z_{0}\right)^{j} \quad \text { as } \quad z \rightarrow z_{0}, \operatorname{Arg}\left(z-z_{0}\right) \in\left(\theta_{0}, \theta_{1}\right) ?

Show that the coefficients {cj}j=0\left\{c_{j}\right\}_{j=0}^{\infty} are determined uniquely by ff. Show that if ff is analytic at z0z_{0}, then its Taylor series is an asymptotic expansion for ff as zz0(z \rightarrow z_{0}\left(\right. for any Arg(zz0))\left.\operatorname{Arg}\left(z-z_{0}\right)\right).

Show that

u(x,t)=exp(ik2t+ikx)f(k)dku(x, t)=\int_{-\infty}^{\infty} \exp \left(-i k^{2} t+i k x\right) f(k) d k

defines a solution of the equation itu+x2u=0i \partial_{t} u+\partial_{x}^{2} u=0 for any smooth and rapidly decreasing function ff. Use the method of stationary phase to calculate the leading-order behaviour of u(λt,t)u(\lambda t, t) as t+t \rightarrow+\infty, for fixed λ\lambda.