Paper 3, Section II, F

Automata and Formal Languages
Part II, 2016

(a) Let D=(Q,Σ,δ,q0,F)D=\left(Q, \Sigma, \delta, q_{0}, F\right) be a deterministic finite-state automaton. Define the extended transition function δ^:Q×ΣQ\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q, and the language accepted by DD, denoted L(D)\mathcal{L}(D). Let u,vΣu, v \in \Sigma^{*}, and pQp \in Q. Prove that δ^(p,uv)=δ^(δ^(p,u),v)\hat{\delta}(p, u v)=\hat{\delta}(\hat{\delta}(p, u), v).

(b) Let σ1,σ2,,σkΣ\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k} \in \Sigma where kQk \geqslant|Q|, and let pQp \in Q.

(i) Show that there exist 0i<jk0 \leqslant i<j \leqslant k such that δ^(p,σ1σi)=δ^(p,σ1σj)\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{i}\right)=\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{j}\right), where we interpret σ1σi\sigma_{1} \cdots \sigma_{i} as ϵ\epsilon if i=0i=0.

(ii) Show that δ^(p,σ1σiσj+1σk)=δ^(p,σ1σk)\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{i} \sigma_{j+1} \cdots \sigma_{k}\right)=\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{k}\right).

(iii) Show that δ^(p,σ1σi(σi+1σj)tσj+1σk)=δ^(p,σ1σk)\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{i}\left(\sigma_{i+1} \cdots \sigma_{j}\right)^{t} \sigma_{j+1} \cdots \sigma_{k}\right)=\hat{\delta}\left(p, \sigma_{1} \cdots \sigma_{k}\right) for all t1t \geqslant 1.

(c) Prove the following version of the pumping lemma. Suppose wL(D)w \in \mathcal{L}(D), with wQ|w| \geqslant|Q|. Then ww can be broken up into three words w=xyzw=x y z such that yϵ,xyQy \neq \epsilon,|x y| \leqslant|Q|, and for all t0t \geqslant 0, the word xytzx y^{t} z is also in L(D)\mathcal{L}(D).

(d) Hence show that

(i) if L(D)\mathcal{L}(D) contains a word of length at least Q|Q|, then it contains infinitely many words;

(ii) if L(D)\mathcal{L}(D) \neq \emptyset, then it contains a word of length less than Q|Q|;

(iii) if L(D)\mathcal{L}(D) contains all words in Σ\Sigma^{*} of length less than Q|Q|, then L(D)=Σ\mathcal{L}(D)=\Sigma^{*}.