Using conservation of angular momentum L=Laea in the body frame, derive the Euler equations for a rigid body:
I1ω˙1+(I3−I2)ω2ω3=0,I2ω˙2+(I1−I3)ω3ω1=0,I3ω˙3+(I2−I1)ω1ω2=0
[You may use the formula e˙a=ω∧ea without proof.]
Assume that the principal moments of inertia satisfy I1<I2<I3. Determine whether a rotation about the principal 3-axis leads to stable or unstable perturbations.