Paper 3, Section I, E

Classical Dynamics
Part II, 2016

Consider a six-dimensional phase space with coordinates (qi,pi)\left(q_{i}, p_{i}\right) for i=1,2,3i=1,2,3. Compute the Poisson brackets {Li,Lj}\left\{L_{i}, L_{j}\right\}, where Li=ϵijkqjpkL_{i}=\epsilon_{i j k} q_{j} p_{k}.

Consider the Hamiltonian

H=12p2+V(q)H=\frac{1}{2}|\mathbf{p}|^{2}+V(|\mathbf{q}|)

and show that the resulting Hamiltonian system admits three Poisson-commuting independent first integrals.