Paper 2, Section II, E

Classical Dynamics
Part II, 2016

Define what it means for the transformation R2nR2n\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n} given by

(qi,pi)(Qi(qj,pj),Pi(qj,pj)),i,j=1,,n\left(q_{i}, p_{i}\right) \mapsto\left(Q_{i}\left(q_{j}, p_{j}\right), P_{i}\left(q_{j}, p_{j}\right)\right), \quad i, j=1, \ldots, n

to be canonical. Show that a transformation is canonical if and only if

{Qi,Qj}=0,{Pi,Pj}=0,{Qi,Pj}=δij\left\{Q_{i}, Q_{j}\right\}=0, \quad\left\{P_{i}, P_{j}\right\}=0, \quad\left\{Q_{i}, P_{j}\right\}=\delta_{i j}

Show that the transformation R2R2\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} given by

Q=qcosϵpsinϵ,P=qsinϵ+pcosϵQ=q \cos \epsilon-p \sin \epsilon, \quad P=q \sin \epsilon+p \cos \epsilon

is canonical for any real constant ϵ\epsilon. Find the corresponding generating function.