Paper 3, Section II, E

Electrodynamics
Part II, 2016

The current density in an antenna lying along the zz-axis takes the form

J(t,x)={z^I0sin(kdkz)eiωtδ(x)δ(y)zd0z>d,\mathbf{J}(t, \mathbf{x})=\left\{\begin{array}{ll} \hat{\mathbf{z}} I_{0} \sin (k d-k|z|) e^{-i \omega t} \delta(x) \delta(y) & |z| \leqslant d \\ \mathbf{0} & |z|>d \end{array},\right.

where I0I_{0} is a constant and ω=ck\omega=c k. Show that at distances r=xr=|\mathbf{x}| for which both rdr \gg d and rkd2/(2π)r \gg k d^{2} /(2 \pi), the retarded vector potential in Lorenz gauge is

A(t,x)z^μ0I04πreiω(tr/c)ddsin(kdkz)eikzcosθdz\mathbf{A}(t, \mathbf{x}) \approx \hat{\mathbf{z}} \frac{\mu_{0} I_{0}}{4 \pi r} e^{-i \omega(t-r / c)} \int_{-d}^{d} \sin \left(k d-k\left|z^{\prime}\right|\right) e^{-i k z^{\prime} \cos \theta} d z^{\prime}

where cosθ=r^z^\cos \theta=\hat{\mathbf{r}} \cdot \hat{\mathbf{z}} and r^=x/x\hat{\mathbf{r}}=\mathbf{x} /|\mathbf{x}|. Evaluate the integral to show that

A(t,x)z^μ0I02πkr(cos(kdcosθ)cos(kd)sin2θ)eiω(tr/c)\mathbf{A}(t, \mathbf{x}) \approx \hat{\mathbf{z}} \frac{\mu_{0} I_{0}}{2 \pi k r}\left(\frac{\cos (k d \cos \theta)-\cos (k d)}{\sin ^{2} \theta}\right) e^{-i \omega(t-r / c)}

In the far-field, where kr1k r \gg 1, the electric and magnetic fields are given by

E(t,x)iωr^×[r^×A(t,x)]B(t,x)ikr^×A(t,x)\begin{aligned} &\mathbf{E}(t, \mathbf{x}) \approx-i \omega \hat{\mathbf{r}} \times[\hat{\mathbf{r}} \times \mathbf{A}(t, \mathbf{x})] \\ &\mathbf{B}(t, \mathbf{x}) \approx i k \hat{\mathbf{r}} \times \mathbf{A}(t, \mathbf{x}) \end{aligned}

By calculating the Poynting vector, show that the time-averaged power radiated per unit solid angle is

dPdΩ=cμ0I028π2(cos(kdcosθ)cos(kd)sinθ)2\frac{d \mathcal{P}}{d \Omega}=\frac{c \mu_{0} I_{0}^{2}}{8 \pi^{2}}\left(\frac{\cos (k d \cos \theta)-\cos (k d)}{\sin \theta}\right)^{2}

[You may assume that in Lorenz gauge, the retarded potential due to a localised current distribution is

A(t,x)=μ04πJ(tret,x)xxd3x\mathbf{A}(t, \mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(t_{\mathrm{ret}}, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} \mathbf{x}^{\prime}

where the retarded time tret =txx/c.]\left.t_{\text {ret }}=t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c .\right]