Paper 1, Section II, B
State the vorticity equation and interpret the meaning of each term.
A planar vortex sheet is diffusing in the presence of a perpendicular straining flow. The flow is everywhere of the form , where as , and and are constants. Show that the vorticity has the form , and obtain a scalar equation describing the evolution of .
Explain physically why the solution approaches a steady state in which the vorticity is concentrated near . Use scaling to estimate the thickness of the steady vorticity layer as a function of and the kinematic viscosity .
Determine the steady vorticity profile, , and the steady velocity profile, .
Hint:
State, with a brief physical justification, why you might expect this steady flow to be unstable to long-wavelength perturbations, defining what you mean by long.