Paper 2, Section I, A

Further Complex Methods
Part II, 2016

The Euler product formula for the Gamma function is

Γ(z)=limnn!nzz(z+1)(z+n)\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n ! n^{z}}{z(z+1) \ldots(z+n)}

Use this to show that

Γ(2z)22zΓ(z)Γ(z+12)=c,\frac{\Gamma(2 z)}{2^{2 z} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)}=c,

where cc is a constant, independent of zz. Find the value of cc.