Paper 1, Section II, D

General Relativity
Part II, 2016

Consider a family of geodesics with ss an affine parameter and VaV^{a} the tangent vector on each curve. The equation of geodesic deviation for a vector field WaW^{a} is

D2WaDs2=RbcdaVbVcWd\frac{D^{2} W^{a}}{D s^{2}}=R_{b c d}^{a} V^{b} V^{c} W^{d}

where DDs\frac{D}{D s} denotes the directional covariant derivative VbbV^{b} \nabla_{b}.

(i) Show that if

VbWaxb=WbVaxbV^{b} \frac{\partial W^{a}}{\partial x^{b}}=W^{b} \frac{\partial V^{a}}{\partial x^{b}}

then WaW^{a} satisfies ()(*).

(ii) Show that VaV^{a} and sVas V^{a} satisfy ()(*).

(iii) Show that if WaW^{a} is a Killing vector field, meaning that bWa+aWb=0\nabla_{b} W_{a}+\nabla_{a} W_{b}=0, then WaW^{a} satisfies ()(*).

(iv) Show that if Wa=wUaW^{a}=w U^{a} satisfies ()(*), where ww is a scalar field and UaU^{a} is a time-like unit vector field, then

d2wds2=(Ω2K)wDUaDsDUaDs and K=RabcdUaVbVcUd\begin{gathered} \frac{d^{2} w}{d s^{2}}=\left(\Omega^{2}-K\right) w \\ -\frac{D U^{a}}{D s} \frac{D U_{a}}{D s} \quad \text { and } \quad K=R_{a b c d} U^{a} V^{b} V^{c} U^{d} \end{gathered}

 where Ω2=DUaDsDUaDs and K=RabcdUaVbVcUd\begin{aligned} & \text { where } \quad \Omega^{2}=-\frac{D U^{a}}{D s} \frac{D U_{a}}{D s} \text { and } \quad K=R_{a b c d} U^{a} V^{b} V^{c} U^{d} \text {. } \end{aligned}

[You may use: bcXacbXa=RdbcaXd\nabla_{b} \nabla_{c} X^{a}-\nabla_{c} \nabla_{b} X^{a}=R_{d b c}^{a} X^{d} for any vector field Xa.]\left.X^{a} .\right]