Consider a family of geodesics with s an affine parameter and Va the tangent vector on each curve. The equation of geodesic deviation for a vector field Wa is
Ds2D2Wa=RbcdaVbVcWd
where DsD denotes the directional covariant derivative Vb∇b.
(i) Show that if
Vb∂xb∂Wa=Wb∂xb∂Va
then Wa satisfies (∗).
(ii) Show that Va and sVa satisfy (∗).
(iii) Show that if Wa is a Killing vector field, meaning that ∇bWa+∇aWb=0, then Wa satisfies (∗).
(iv) Show that if Wa=wUa satisfies (∗), where w is a scalar field and Ua is a time-like unit vector field, then
ds2d2w=(Ω2−K)w−DsDUaDsDUa and K=RabcdUaVbVcUd
where Ω2=−DsDUaDsDUa and K=RabcdUaVbVcUd.
[You may use: ∇b∇cXa−∇c∇bXa=RdbcaXd for any vector field Xa.]