Paper 3, Section II, D

Integrable Systems
Part II, 2016

What is meant by an auto-Bäcklund transformation?

The sine-Gordon equation in light-cone coordinates is

2φξτ=sinφ\frac{\partial^{2} \varphi}{\partial \xi \partial \tau}=\sin \varphi

where ξ=12(xt),τ=12(x+t)\xi=\frac{1}{2}(x-t), \tau=\frac{1}{2}(x+t) and φ\varphi is to be understood modulo 2π2 \pi. Show that the pair of equations

ξ(φ1φ0)=2ϵsin(φ1+φ02),τ(φ1+φ0)=2ϵsin(φ1φ02)\partial_{\xi}\left(\varphi_{1}-\varphi_{0}\right)=2 \epsilon \sin \left(\frac{\varphi_{1}+\varphi_{0}}{2}\right), \quad \partial_{\tau}\left(\varphi_{1}+\varphi_{0}\right)=\frac{2}{\epsilon} \sin \left(\frac{\varphi_{1}-\varphi_{0}}{2}\right)

constitute an auto-Bäcklund transformation for (1).

By noting that φ=0\varphi=0 is a solution to (1), use the transformation (2) to derive the soliton (or 'kink') solution to the sine-Gordon equation. Show that this solution can be expressed as

φ(x,t)=4arctan[exp(±xct1c2+x0)]\varphi(x, t)=4 \arctan \left[\exp \left(\pm \frac{x-c t}{\sqrt{1-c^{2}}}+x_{0}\right)\right]

for appropriate constants cc and x0x_{0}.

[Hint: You may use the fact that cosecx dx=logtan(x/2)+\int \operatorname{cosec} x \mathrm{~d} x=\log \tan (x / 2)+ const.]

The following function is a solution to the sine-Gordon equation:

φ(x,t)=4arctan[csinh(x/1c2)cosh(ct/1c2)](c>0).\varphi(x, t)=4 \arctan \left[c \frac{\sinh \left(x / \sqrt{1-c^{2}}\right)}{\cosh \left(c t / \sqrt{1-c^{2}}\right)}\right] \quad(c>0) .

Verify that this represents two solitons travelling towards each other at the same speed by considering x±ct=x \pm c t= constant and taking an appropriate limit.