Paper 4, Section II, I

Linear Analysis
Part II, 2016

Let HH be a complex Hilbert space.

(a) Let T:HHT: H \rightarrow H be a bounded linear map. Show that the spectrum of TT is a subset of {λC:λTB(H)}\left\{\lambda \in \mathbb{C}:|\lambda| \leqslant\|T\|_{\mathcal{B}(H)}\right\}.

(b) Let T:HHT: H \rightarrow H be a bounded self-adjoint linear map. For λ,μC\lambda, \mu \in \mathbb{C}, let Eλ:={xH:Tx=λx}E_{\lambda}:=\{x \in H: T x=\lambda x\} and Eμ:={xH:Tx=μx}E_{\mu}:=\{x \in H: T x=\mu x\}. If λμ\lambda \neq \mu, show that EλEμE_{\lambda} \perp E_{\mu}.

(c) Let T:HHT: H \rightarrow H be a compact self-adjoint linear map. For λ0\lambda \neq 0, show that Eλ:={xH:Tx=λx}E_{\lambda}:=\{x \in H: T x=\lambda x\} is finite-dimensional.

(d) Let H1HH_{1} \subset H be a closed, proper, non-trivial subspace. Let PP be the orthogonal projection to H1H_{1}.

(i) Prove that PP is self-adjoint.

(ii) Determine the spectrum σ(P)\sigma(P) and the point spectrum σp(P)\sigma_{p}(P) of PP.

(iii) Find a necessary and sufficient condition on H1H_{1} for PP to be compact.