Paper 1, Section II, F

Number Fields
Part II, 2016

(a) Let f(X)Q[X]f(X) \in \mathbb{Q}[X] be an irreducible polynomial of degree n,θCn, \theta \in \mathbb{C} a root of ff, and K=Q(θ)K=\mathbb{Q}(\theta). Show that disc(f)=±NK/Q(f(θ))\operatorname{disc}(f)=\pm N_{K / \mathbb{Q}}\left(f^{\prime}(\theta)\right).

(b) Now suppose f(X)=Xn+aX+bf(X)=X^{n}+a X+b. Write down the matrix representing multiplication by f(θ)f^{\prime}(\theta) with respect to the basis 1,θ,,θn11, \theta, \ldots, \theta^{n-1} for KK. Hence show that

disc(f)=±((1n)n1an+nnbn1)\operatorname{disc}(f)=\pm\left((1-n)^{n-1} a^{n}+n^{n} b^{n-1}\right)

(c) Suppose f(X)=X4+X+1f(X)=X^{4}+X+1. Determine OK\mathcal{O}_{K}. [You may quote any standard result, as long as you state it clearly.]